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NOTE
Which Algorithm |s Better?

D. C. Rapaport notes in [ 1], that the degree to which the
discarded collision schedulings are repeated, is not studied
in [2]. To answer the comment, I made the requested
measurements. Under the conditions comparable with those
suggested in [17] and discussed below, there are § to 13%
more schedulings counted with multiplicity, than those
counted only once. Also, among all the processed events,
there may be up to 15% no-collision events [27]. This
yields (100/(100 — 15))— 1 =18 % overhead. Although the
repeated collision schedulings caused by these 18% are
already subsumed in the 8 — 13% overhead, we generously
multiply the upper bounds: 1.18 x 1.13 =1.33. The latter
bound (computed for the specified conditions} can be
spelled out as follows: execution of a best implementation of
[2] takes ar most one third longer than-execution of a best
implementation of [3]. The bound holds despite the fact
that in this calculation we ignored computing time spent for
the combinatorial data manipulations (choosing next event,
maintaining linked-lists and binary trees, etc.), because
these manipulations per processed event take longer for [3]
than for [2].

If a user has to write a billiard-ball simulation without the
assistance of the authors of the original algorithms,
shortouts are likely to be taken. Efficient but complex data
manipulation structures in {3] might probably be sub-
stituted with simpler, but inefficient ones. As a result, the
actual implementation of [3] might be slower than that of
[2], because the latter algorithm is more robust with
respect to the data manipulation inefficiency. That is the
main message of my response to [ 17]. The other comments
made in [ 1] are addressed below.

I believe the algorithmic difference between methods
[3, 2] 1s assessed in [ 1] correctly, except for the statement
made in [ 1] that the mechanism in [27] “does not guarantee
monotonically increasing time between events.” Indeed, if
we ignore the effects of roundoff, then both algorithms
under the same input and conditions would process the
same collisions in the same time-increasing order, unless
encountering degenerated and usually rare cases of multiple
simultaneous collisions when both aigorithms would
experience similar difficulties. However, 1 have reservations
about the premises on which {1] bases its conclusion that
the algorithm in [3] “appears substantially faster” than the
algorithm in [27.

369

I quote from [47]:

[fixed code instance [best optimization effort

for] n=100 for] n = 1000
IBM 4381-13 1.2 Mflops No data
DEC VAX 8550 0.99 Mflops 1.3 Mflops

We see that for the same » = 100 task, TBM is 20 % faster
than DEC, contrary to the statement in [1] that equates
both computers at 1.2 Mflops and is apparently based on a
version of the same report by Dongarra.

The quote from [4] also illustrates a well-known fact that
the choice of a task’s parameters or code adjustment may
substantially change the algorithm performance. One
should not compare DEC performance for optimized code
and »=1000 with IBM performance for fixed code and
n=100. As to the algorithms in [3, 21, their performance is
sensitive to the ratio of a particle diameter to the size of the
subdividing cell. Not only [3] confirms this statement by
thorough experiments, but it also stresses optimization of
performance with respect to the parameters, including the
mentioned ratio. Hence one should assume that speed
quoted in [1], 670 collisions/s, is an optimized value. By
contrast, experiments in [2] were not similarly optimized,
because size of particles changed during computations.
While the particles were growing, the cells were fixed, and
since the final particie size was unknown, the cell size was
based on an upper bound for the particle size.

Computations in [27] were arranged as a sequence of
sessions; the performance range of 150 to 450 collisions/s
quoted in [1] was produced over different sessions. Since
the first session started with particles of zero size, the
collision rate at first was low, about 150 collisions/s. As the
experiment progressed the rate gradually grew. The small
initial collision rate is not specific to [2]; the algorithm in
[3] would also show small collision rate when particle sizes
are sufficiently small. A statement in [1] seemingly to the
contrary, namely, that [3] shows even faster speeds at
“lower densities” should not be misunderstood.

On DEC VAX 8550, I followed the conditions described
in [1] and made several runs with N = 2500 disks of fixed
equal and known size for densities (covering fractions)
ranging from 0.698 to 0.876. (The above-mentioned
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scheduling overhead measurements were done under the
same conditions.) The cell size each time was chosen to be
the minimum possible. Note that these cell sizes are not
necessarily optimal, as is argued in [3], but even for such a
choice the range of collision rates appeared much smaller
than quoted in [ 1], namely 400 to 470 collisions/s. Each run
was repeated several times and it is interesting that the
variations among repetitions of the same run were of the
same order as the variations among different runs.

In [2]. not only is memory size smaller than in [3], but
is also fixed per particle. This latter advantage becomes
important in parallel processing, where each processing
clement has a small and fixed memory. A parallel version of
12] is presented in [5, 6], where the simplicity of the data
structure facilitates the mechanism of returning to an old
state of computation (rollback). Greater convenience of
scheme [2] as compared to scheme [3] in a parallel
implementation can be seen in the following example. To
find quickly the particle with the minimum next scheduled
event time, both [2, 37 use a binary tree. However, in [2],
for a small number N of particies, a straightforward
examining of all N next-event times (recorded in a con-
tiguous array, not via a linked-list as in [37]} is the simplest
and most efficient way to perform the task. This is not so for
[3], where even for a small ¥, some form of a list structure
must be retained, because of variability of the size of data
records. Hence, using [ 2] on a parallel machine, where each
processing element holds only a few particles in its local
memory, we can, without losing efficiency, abandon the
binary tree in favor of the straightforward search.

It is hard to argue with the remark in [1] that the
algorithm in [2] being non-natural, “requires a lengthy
discussion to convince the reader of its consistency and
correctness,” whiie the algorithm in [ 1] is “natural.” 1 tried
to explain the algorithm in [2] to some colleagues who
were not aware of the algorithms [37 or [ 7] and they could
not even see the originality in my algorithm, to such an
extent it was clear and “natural” to them. As to the “lengthy
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discussion” in {2], much of it equally applies to [ 37 and not
all of the discussion is correctness proof. In my opinion, the
algorithm in [37] nceds a proof of correctness not in a
smaller degree, than does the algorithm in [2].

Finally, I should apologize for being unaware of [3]
when writing [2]. Moreover, I should concede that 1|
learned about the pioneering algorithm in [77 and subse-
quent work, e.g., [8], only after my first serial code for
billiards simulation was already operational, as I wasinitially
motivated to this task, not by its use in computational
physics: I was after an efficient serial simulation procedure
appropriate to render it parallel. 1 think the algorithm in
[27] 15 such a procedure which was also successfully used as
a serial code [9, 10].
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